H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

MBA in Business Analytics

*1. Core MBA Courses* 

(Foundational courses with a focus on analytics integration) 

 

*Course Code* | *Course Title* | *Credits* | *Objectives* | *Key Topics* 

---|---|---|---|--- 

MBA 501 | Financial Management | 3 | Use analytics for financial decisions | Financial modelling, risk analytics, ROI optimization 

MBA 502 | Managerial Economics | 3 | Apply econometrics to business strategy | Demand forecasting, pricing analytics, game theory 

MBA 503 | Operations Management | 3 | Optimize processes with data tools | Supply chain analytics, process mining, Six Sigma 

MBA 504 | Organizational Behaviour | 3 | Leverage data for HR strategies | Workforce analytics, employee engagement metrics 

MBA 505 | Strategic Management | 3 | Drive strategy with data insights | Competitive analytics, scenario planning, KPI dashboards 

MBA 506 | Business Ethics & CSR | 3 | Address ethical challenges in AI/analytics | Data privacy, algorithmic bias, AI governance 

MBA 507 | Advanced Business Analytics | 3 | Master analytics frameworks | CRISP-DM, data lifecycle, predictive vs. prescriptive analytics 

MBA 508 | Leadership in Data-Driven Organizations | 3 | Lead analytics teams and projects | Change management, data storytelling, stakeholder buy-in 

 

*2. Business Analytics Specialization Courses* 

(Advanced technical and applied analytics modules) 

 

*Course Code* | *Course Title* | *Credits* | *Objectives* | *Key Topics* 

---|---|---|---|--- 

BA 601 | Data Mining & Predictive Modelling | 3 | Extract insights from large datasets | Clustering, classification, regression (Python/R) 

BA 602 | Big Data Technologies | 3 | Manage and analyse big data | Hadoop, Spark, NoSQL databases, cloud platforms (AWS/Azure) 

BA 603 | Machine Learning for Business | 3 | Implement ML solutions in business contexts | Supervised/unsupervised learning, NLP, recommendation systems 

BA 604 | Business Intelligence & Visualization | 3 | Transform data into actionable reports | Tableau, Power BI, Qlik, dashboard design 

BA 605 | Marketing Analytics | 3 | Optimize marketing strategies with data | Customer segmentation, campaign ROI, attribution modelling 

BA 606 | Supply Chain & Logistics Analytics | 3 | Enhance supply chain efficiency | Inventory optimization, route planning, demand forecasting 

BA 607 | AI for Business Decision-Making | 3 | Apply AI tools to solve business problems | Chatbots, robotic process automation (RPA), AI ethics 

BA 608 | Risk & Fraud Analytics | 3 | Mitigate risks using predictive models | Credit risk modelling, anomaly detection, fraud prevention 

 

*3. Elective Courses* 

(Choose 4–5 based on career interests) 

 

- *BA 701*: Advanced Python/R for Analytics 

- *BA 702*: Customer Analytics & CRM 

- *BA 703*: Healthcare Analytics 

- *BA 704*: Financial Analytics & FinTech 

- *BA 705*: Social Media & Sentiment Analysis 

- *BA 706*: Time Series Forecasting 

- *BA 707*: Ethical AI & Responsible Analytics 

- *BA 708*: IoT and Real-Time Analytics 

 

*4. Capstone Project/Thesis* 

- *Credits*: 6 

- *Objective*: Solve a real-world business problem using analytics (e.g., churn prediction, pricing optimization). 

- *Deliverables*: Data collection, model building, actionable insights, implementation strategy. 

 

*5. Internship (Optional)* 

- *Duration*: 8–12 weeks 

- *Objective*: Gain hands-on experience in analytics roles (e.g., data scientist, business analyst) at tech firms, consultancies, or enterprises. 

 

*6. Tools & Technologies Covered* 

- *Programming*: Python, R, SQL 

- *Visualization*: Tableau, Power BI, D3.js 

- *Big Data*: Hadoop, Spark, AWS 

- *ML/AI*: TensorFlow, scikit-learn, Azure ML 

- *Database*: MySQL, MongoDB, Snowflake 

 

*7. Assessment Methods* 

- *Analytics Projects* (35%) 

- *Exams* (25%) 

- *Case Competitions* (20%) 

- *Presentations* (15%) 

- *Class Participation* (5%) 

 

*8. Recommended Textbooks* 

- *Data Science for Business* by Foster Provost & Tom Fawcett 

- *Python for Data Analysis* by Wes McKinney 

- *Machine Learning Yearning* by Andrew Ng 

- *Big Data: A Revolution* by Viktor Mayer-Schonberger 

 

*Learning Outcomes*: 

Graduates will be able to: 

- Translate business problems into analytics frameworks. 

- Build predictive models using Python/R and ML libraries. 

- Communicate insights visually to non-technical stakeholders. 

- Lead analytics-driven innovation in sectors like finance, retail, or healthcare.