H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

Master's program in Computer Science

*Program Overview*

- *Credits*: 60–120 ECTS or 36–48 semester credits. 

- *Structure*: Core courses + electives + thesis/capstone project. 

- *Prerequisites*: Bachelor’s in CS or related field (may require math/programming proficiency).

 

*Core Courses* 

(Mandatory foundational subjects) 

 

1. *Advanced Algorithms & Data Structures* 

   - Algorithm design (greedy, dynamic programming). 

   - Complexity analysis (time/space, NP-completeness). 

   - Graph algorithms, parallel/distributed algorithms. 

 

2. *Operating Systems & Distributed Systems* 

   - Kernel design, virtualization, concurrency. 

   - Cloud computing, distributed consensus (e.g., blockchain). 

 

3. *Machine Learning & Artificial Intelligence* 

   - Supervised/unsupervised learning, neural networks. 

   - NLP, computer vision, reinforcement learning. 

 

4. *Database Systems & Big Data* 

   - Relational/NoSQL databases, data warehousing. 

   - Hadoop/Spark, data mining, analytics. 

 

5. *Computer Networks & Cybersecurity* 

   - Network protocols (TCP/IP, SDN), IoT. 

   - Cryptography, intrusion detection, ethical hacking. 

 

6. *Software Engineering* 

   - Agile/DevOps, software architecture. 

   - Testing, maintenance, project management. 

 

7. *Research Methods in CS* 

   - Literature review, experimental design, academic writing. 

 

*Electives & Specializations* 

(Students choose 4–6 courses based on interests) 

 

*Artificial Intelligence*: 

- Deep Learning, Robotics, Cognitive Computing. 

 

*Data Science*: 

- Predictive Analytics, Data Visualization, Bayesian Methods. 

 

*Cybersecurity*: 

- Penetration Testing, Digital Forensics, Blockchain Security. 

 

*Cloud/Systems*: 

- Kubernetes, Edge Computing, Serverless Architecture. 

 

*Human-Computer Interaction (HCI)*: 

- UX Design, AR/VR, Usability Testing. 

 

*Quantum Computing*: 

- Quantum algorithms, Qubit programming. 

 

*Other Electives*: 

- Bioinformatics, Computer Vision, IoT, Game Theory. 

 

*Thesis/Capstone Project* 

- *Research Thesis* (12–18 credits): Original research under faculty guidance. 

- *Capstone Project*: Industry/client-based practical implementation (e.g., building a scalable app, AI model deployment). 

- *Dissertation Defence*: Presentation and evaluation. 

 

*Additional Requirements* 

- *Seminars/Workshops*: Attend talks on emerging trends (e.g., AI ethics, quantum supremacy). 

- *Internships*: Optional industry placements for hands-on experience. 

- *Comprehensive Exams*: Some programs require exams to assess core knowledge. 

 

*Sample Course Sequence* 

*Year 1*: 

- Semester 1: Advanced Algorithms, ML/AI, Operating Systems. 

- Semester 2: Databases, Networks, Elective 1. 

 

*Year 2*: 

- Semester 3: Electives 2–4, Research Methods. 

- Semester 4: Thesis/Capstone Project. 

 

*Assessment* 

- Exams, research papers, coding projects, presentations. 

- Thesis evaluated by a committee.