H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

Graduate-level Metallurgical Engineering

*Course Description* 

This course explores the principles of physical metallurgy, including microstructure-property relationships, phase transformations, alloy design, and advanced characterization techniques for metals and alloys. 

 

 *Learning Objectives* 

By the end of this course, students will: 

1. Analyse phase diagrams and microstructure evolution in metals. 

2. Apply thermodynamics and kinetics to phase transformations (e.g., precipitation, martensitic transformations). 

3. Design alloys for specific mechanical, thermal, or corrosion-resistant properties. 

4. Use advanced characterization tools (SEM, TEM, XRD) to evaluate microstructures. 

 

*Required Materials* 

- Textbook: Physical Metallurgy Principles by Reza Abbaschian (4th ed.). 

- Software: Thermo-Calc, MATLAB (for simulations). 

- Lab access: Scanning Electron Microscope (SEM), X-ray Diffraction (XRD). 

 

*Course Schedule* 

| Week | Topics                                      | Assessments | 

|------|---------------------------------------------|-------------| 

| 1–2  | Review of phase diagrams, Gibbs free energy | Homework 1  | 

| 3–4  | Solidification & nucleation theory          | Lab 1 (Microstructure Analysis) | 

| 5–6  | Precipitation hardening, aging kinetics     | Midterm Exam | 

| 7–8  | Martensitic transformations, shape memory alloys | Homework 2 | 

| 9–10 | Alloy design for aerospace/automotive apps  | Project Proposal | 

| 11–14| Advanced characterization techniques        | Final Project & Presentation | 

 

*Assessment* 

- Homework & Labs (30%) 

- Midterm Exam (25%) 

- Final Project (35%) 

- Participation (10%) 

 

*Policies* 

- Late submissions: 15% penalty per day. 

- Collaboration: Allowed for labs, but individual reports. 

- Lab safety: Mandatory PPE (gloves, goggles) during experiments. 

 

*Graduate Program Curriculum Overview* 

A typical *M.S./Ph.D. in Metallurgical Engineering* includes core courses, electives, and a thesis/dissertation. 

 

*Core Courses* 

1. *Extractive Metallurgy* 

   - Pyrometallurgy, hydrometallurgy, electrometallurgy. 

   - Sustainability in metal extraction (e.g., recycling, low-carbon processes). 

 

2. *Mechanical Behaviour of Materials* 

   - Plastic deformation, fracture mechanics, fatigue, creep. 

 

3. *Advanced Materials Characterization* 

   - Hands-on training with SEM, TEM, EBSD, and XRD. 

 

4. *Computational Materials Science* 

   - Modelling phase transformations, microstructure evolution (CALPHAD, phase-field modelling). 

 

*Electives* 

- *Corrosion Engineering* 

- *Nanomaterials & Thin Films* 

- *Additive Manufacturing of Metals* 

- *Biomaterials & Medical Implants* 

- *Advanced Welding & Joining Technologies* 

 

*Research/Thesis* 

- *M.S.*: 1–2 years of research (e.g., alloy development, process optimization). 

- *Ph.D.*: 3–5 years of original research (e.g., novel extraction methods, high-entropy alloys). 

- Defence and peer-reviewed publication required. 

 

 *Program Policies* 

- *Credits*: 30–36 credits (M.S.), 60+ credits (Ph.D.). 

- *Comprehensive Exams*: Required for Ph.D. candidacy (written + oral). 

- *Industry Partnerships*: Optional internships with mining/metals companies (e.g., ArcelorMittal, Rio Tinto).