H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

Graduate-level Electrical Engineering

*Course Description* 

This course covers advanced topics in digital signal processing (DSP), including time-frequency analysis, adaptive filtering, multi rate systems, and applications in communications and machine learning. 

 

*Learning Objectives* 

By the end of this course, students will: 

1. Design and analyse multi rate DSP systems (e.g., filter banks). 

2. Apply adaptive filtering techniques (LMS, RLS algorithms) to real-world problems. 

3. Implement wavelet transforms and time-frequency analysis methods. 

4. Integrate DSP concepts with machine learning applications. 

 

*Required Materials* 

- Textbook: Advanced Digital Signal Processing by Proakis & Manolakis (2nd ed.). 

- Software: MATLAB/Python (labs). 

 

*Course Schedule* 

| Week | Topics                                      | Assessments | 

|------|---------------------------------------------|-------------| 

| 1    | Review of DFT, FFT, Z-transform             | Homework 1  | 

| 2–3  | Multirate Systems: Decimation, Interpolation| Lab 1       | 

| 4–5  | Adaptive Filters (LMS/RLS Algorithms)       | Midterm 1   | 

| 6–7  | Wavelet Transforms & Time-Frequency Analysis| Project Proposal | 

| 8–10 | DSP in Machine Learning (Feature Extraction)| Final Project | 

 

*Assessment* 

- Homework (20%) 

- Labs (30%) 

- Midterm Exam (20%) 

- Final Project (30%) 

 

 *Policies* 

- Late work: 10% penalty per day. 

- Collaboration: Allowed on labs, but individual reports. 

- Academic integrity: Zero tolerance for plagiarism. 

 

*Graduate Program Curriculum Overview* 

A typical M.S./Ph.D. in Electrical Engineering includes *core courses, **electives*, and a thesis/research project. 

 

*Core Courses* 

1. *Advanced Electromagnetic Theory* 

   - Maxwell’s equations, wave propagation, antennas. 

   - Computational EM (FDTD, FEM). 

 

2. *Power Systems Analysis* 

   - Grid stability, renewable integration, smart grids. 

 

3. *Modern Control Systems* 

   - Nonlinear control, robust control, optimization. 

 

4. *VLSI Design* 

   - CMOS circuits, FPGA prototyping, low-power design. 

 

*Electives* 

- *Machine Learning for Engineers* 

- *Optical Communications* 

- *Renewable Energy Systems* 

- *Embedded Systems Design* 

 

*Research/Thesis* 

- Original research project (2–4 semesters). 

- Defence and publication required for Ph.D. 

 

*Program Policies* 

- *Credits:* 30–36 credits (M.S.), 60+ credits (Ph.D.). 

- *Advising:* Mandatory faculty advisor meetings each term. 

- *Comprehensive Exams:* Required for Ph.D. candidacy.