B.Sc. Statistics
*Year 1: Foundations of Statistics & Mathematics*
*Semester 1:*
- *Descriptive Statistics* (Measures of Central Tendency, Dispersion)
- *Probability Theory* (Basic Concepts, Bayes’ Theorem)
- *Calculus* (Limits, Differentiation, Integration)
- Lab: R/Python Programming Basics
*Semester 2:*
- *Probability Distributions* (Binomial, Poisson, Normal)
- *Linear Algebra* (Matrices, Vector Spaces)
- *Mathematical Statistics* (Sampling Distributions)
- Lab: Data Visualization (ggplot2, Matplotlib)
*Year 2: Core Statistical Methods*
*Semester 3:*
- *Statistical Inference* (Estimation, Hypothesis Testing)
- *Regression Analysis* (Simple & Multiple)
- *Design of Experiments* (ANOVA, CRD)
- Lab: SPSS/Excel for Statistical Tests
*Semester 4:*
- *Multivariate Analysis* (PCA, Factor Analysis)
- *Time Series Analysis* (Forecasting, ARIMA)
- *Stochastic Processes* (Markov Chains)
- Lab: Time Series Modelling (R/Python)
*Year 3: Advanced Topics & Applications*
*Semester 5: *
- *Bayesian Statistics*
- *Machine Learning Basics* (Clustering, Classification)
- *Electives (Choose 1): *
- Actuarial Statistics
- Biostatistics
- Econometrics
- Lab: Mini-Project (Real-world Dataset Analysis)
*Semester 6: *
- *Operations Research* (Linear Programming)
- *Big Data Analytics* (Hadoop/Spark Basics)
- *Capstone Project* (Industry/Research Problem)
*Key Features: *
- *Software Proficiency: * R, Python, SPSS, Excel.
- *Interdisciplinary Links: * Economics (Econometrics), Biology (Biostats), AI (ML).
- *Labs (30% weightage): * Hands-on data analysis, report writing.